
Shell脚本编程基础

生命健康信息学院 解增言

内容

l Shell特殊字符

Ø 通配符

Ø 正则表达式

Ø 引号

Ø 转义符与路径符

Ø 输入输出重定向

Ø 注释和后台命令

Ø 命令组合符

Ø 成组命令

l Shell概述

Ø Shell的概念

Ø Shell的特点

Ø Shell版本

Ø Shell程序示

例

Ø Shell程序执

行方法

l Linux命令帮手

Ø 命令行编辑

Ø screen工具

l Shell变量

Ø 用户自定义变量

Ø 位置变量

Ø Shell预定义变量

Ø 环境变量

l 算术运算

l 控制结构

l 函数

l 作业控制

l Shell内置命令

l Shell脚本调试

l Shell脚本示例

进程、父进程与子进程

Ø进程，就是程序的一次执行过程

Ø由一个进程创建的另一个进程，前者叫父进程，后

者是前者的子进程

Ø会产生子进程的几种情况：

• &，提交后台作业

• 管道，管道里的每一个命令在一个单独的子进程里执行

• 圆括号命令列表()

• 执行外部命令或程序

私有变量和公用变量

父进程
私有区

子进程
私有区

公用区（环境）

export

作业控制

• Ctrl + z 暂停正在运行的命令

• fg 将后台程序放到前台

• bg 将暂停的程序放到后台继续执行

• & 放在命令尾部，后台执行

• jobs 查看当前在后台运行的命令

• kill 终止后台进程

• Ctrl + c 终止前台进程

shell内置命令

• 内置命令：内置在shell代码中，执行时

无需到磁盘上定位，速度快，如cd

• 外部命令：存放在磁盘上，如/bin、

/usr/bin目录下，执行时需从PATH定义的

路径中查找，如date

shell内置命令

• : .
• alias
• break
• bg
• bind
• builtin
• cd
• continue
• declare
• dirs
• disown
• echo

• anable
• eval
• exec
• exit
• export
• fc
• fg
• getopts
• hash
• help
• history
• jobs

• kill
• let
• local
• logout
• popd
• pushd
• pwd
• read
• readonly
• return
• set
• shift

• stop
• suspend
• test
• times
• trap
• type
• typeset
• ulimit
• umask
• unalias
• unset
• wait

eval命令

• 强制shell对命令行进行两次扫描，执行变量或命

令替换，如：

a=protein

b="$"a

echo $b #$a

eval echo $b #protein

eval echo "$"b #$a

exec、source和.命令

Ø 三个命令都不会启动新的进程

Ø exec用要被执行命令替换当前的shell进程，并且将老进程的环境清理

掉，如：

exec ls

执行ls后，shell将退出，因此exec通常放在脚本里面使用，而不是直接

在命令中用

Ø source命令或者.命令，不会为脚本新建shell，而只是将脚本包含的命

令在当前shell执行，执行完返回当前shell如：

source test.sh

hash命令

Ø Linux为了提高在PATH路径中查询命令的速度，采用了命令哈

希表来记录成功执行过的外部命令。当shell在PATH中找到一

个命令时，将这个命令及其路径放入哈希表。用户输入一个

外部命令时，shell将先在哈希表中进行查询，哈希表中不存

在时再去PATH指定的路径中去寻找。

Ø hash命令列出当前登录shell记录的使用过的外部命令的路径

及相关调用次数等信息。加-r选项为清空命令哈希表。

总结：Shell命令执行过程

命令

执行

内置命令？

命令找不到

否（外部命令）

hash？
否

根据hash记录的路
径读入内存执行

是

PATH？
否

读入内存执行并
将路径记入hash

是

是

是否已被哈希
（成功执行过）

是否能在环境变量
PATH的路径中找到

是否是
内置命令

unset命令

•删除已定义的变量，如：

$a=protein

$echo $a

protein

$unset a #变量名前不能有$

$echo $a

readonly命令

•设置变量为只读，后面不能再用赋值语句改变该变

量的值，防止一个变量被修改。如：

$a=protein

$readonly a #变量名前不能有$，参考export与unset

$a=CDS

-bash: a: 只读变量

$unset a

-bash: unset: a: 无法反设定: 只读 variable

type命令

•显示一个命令的类型或如何被解释的，如：

$type cd

-cd 是 shell 内嵌

$type ls

-ls 是 `ls --color=auto' 的别名

$type man

-man 已被哈希 (/usr/bin/man)

wait命令

•等待一个进程结束，如：

$wait 3702 #等待PID为3702的进程结束

$wait #等待当前shell所有活动的进程结束

shell脚本调试

Ø注释掉部分代码

Ø利用echo、tee等输出关键信息，跟踪变量的值

Ø使用trap命令捕捉信号

Ø利用shell脚本调试选项：-c，-n，-x，-v

Ø使用bash专用调试器，如bashdb

shell脚本调试

Ø注释掉部分代码

Ø利用echo、tee等输出关键信息，跟踪变量的值

Ø使用trap命令捕捉信号

Ø利用shell脚本调试选项：-c，-n，-x，-v

Ø使用bash专用调试器，如bashdb

trap命令

Ø trap命令用于指定在接收到信号后要执行的命令。trap命令的一种常见用途是在脚本程

序被中断时完成清理工作。如：

trap “echo Terminated; rm tmp_files” SIGINT

Ø 常用信号（系统产生的信号）：

SIGHUP(1) 挂起，通常因终端掉线或用户退出而引发

SIGINT(2) 中断，通常因按下Ctrl+C组合键而引发

SIGQUIT(3) 退出，通常因按下Ctrl+\组合键而引发

SIGABRT(6) 中止，通常因某些严重的执行错误而引发

SIGALRM(14) 报警，通常用来处理超时

SIGTERM(15) 终止，通常在系统关机时发送

Ø Kill –l可以列出所有的信号

trap命令

•伪信号（shell产生的信号）

–EXIT 从一个函数中退出或整个脚本执行完毕

–ERR 当一条命令返回非零值时(代表命令执行不成功)

–DEBUG脚本中每一条命令执行之前

shell脚本调试选项

•-c：使Shell解析器从字符串而非文件中读取并执行命令

$sh -c 'a=1;b=2;let c=$a+$b;echo "c=$c"'

•-n：读一遍脚本中的命令但不执行，用于检查脚本中的语法错误

•-v：执行脚本的同时将执行过的脚本命令打印到标准错误输出（变量

替换前的命令）

•-x：提供跟踪执行信息，将执行的每一条命令和结果依次打印出来

（变量替换后的命令）

使用shell脚本调试选项的方法

Ø脚本运行时在命令行中设定调试选项

$sh -n script.sh

Ø脚本开头提供调试选项

#!/bin/bash -v

Ø脚本中用set命令启用或禁用调试选项

#! /bin/sh

if [-z "$1"]

then

set -x

echo "ERROR: Insufficient Args. "

exit 1

set +x

fi

课后作业10
（1）编写并调试脚本multi_cp.sh，它把第二个位置参数及其后的各个参数指定的文件复制
到第一个位置参数指定的目录中。
（2）在当前目录下编辑shell脚本cut.sh，第一个命令行参数是个字符串，第二个和第三个
命令行参数是两个数字，脚本实现截取第二和第三两个命令行参数范围内的子字符串，如：
bash cut.sh "hello" 2 4的结果是ell
（3）用c语言编写程序csum.c，编译后可执行文件为csum，实现管道读取一行一个的数字，
并求总和，如：
文件num的内容为：
1
2
3
4
则
cat num |./csum 的结果为10
（4）编写shell脚本sum.sh，利用上面（3）中的csum程序，计算1+2+...+100的和，运行方
式为sh sum.sh 1 100（利用2个命令行参数确定起始和结束的数字）。

